Altes Gymnasium Oldenburg – Physik

Schuleigener Arbeitsplan mit Zuordnung prozess- und inhaltsbezogener Kompetenzen in der Qualifikationsphase Jahrgangsstufe 12 – grundlegendes Niveau (ganzjährig 3 Stunden)

Elektrizität

Inhaltsbezogene Kompetenzen	Prozessbezogene Kompetenzen für
Die Lernenden	
beschreiben elektrische Felder durch ihre Kraftwirkungen auf geladene Probekörper.	 skizzieren Feldlinienbilder für das homogene Feld, das Feld einer Punktladung und das eines Dipols. beschreiben die Funktionsweise eines faradayschen Käfigs als Resultat des Superpositionsprinzips.
nennen die Einheit der Ladung und erläutern die Definition der elektrischen Feldstärke.	 beschreiben ein Verfahren zur Bestimmung der elektrischen Feldstärke auf der Grundlage von Kraftmessungen. werten in diesem Zusammenhang Messreihen angeleitet aus.
 beschreiben den Zusammenhang zwischen Ladung und elektrischer Stromstärke. nennen die Definition der elektrischen Spannung als der pro Ladung übertragbaren Energie. 	
 beschreiben den Zusammenhang zwischen der Feldstärke in einem Plattenkondensator und der anliegenden Spannung. geben die Energiebilanz für einen freien geladenen Körper im elektrischen Feld eines Plattenkondensators an. 	ermitteln angeleitet die Geschwindigkeit eines geladenen Körpers im homogenen elektrischen Feld eines Plattenkondensators mithilfe dieser Energiebilanz.
beschreiben den t-I-Zusammenhang beim Aufladevorgang und beim Ent- ladevorgang eines Kondensators mithilfe einer Exponentialfunktion.	 führen angeleitet Experimente zum Aufladevorgang durch. ermitteln aus den Messdaten den zugehörigen t-I-Zusammenhang. beschreiben qualitativ den Einfluss von R und C auf diesen Zusammenhang. begründen die Auswahl einer exponentiellen Regression auf der Grundlage der Messdaten. ermitteln die geflossene Ladung mithilfe von t-I-Diagrammen.
 nennen die Definition der Kapazität eines Kondensators. nennen die Gleichung für die Energie des elektrischen Feldes eines Plattenkondensators. 	 führen ein Experiment zur Bestimmung der Kapazität eines Kondensators durch. beschreiben eine Einsatzmöglichkeit von Kondensatoren in technischen Systemen. berechnen die Kapazität eines Plattenkondensators aus seinen geometrischen Abmessungen.

Altes Gymnasium Oldenburg – Physik Schuleigener Arbeitsplan mit Zuordnung prozess- und inhaltsbezogener Kompetenzen in der Qualifikationsphase Jahrgangsstufe 12 – grundlegendes Niveau (ganzjährig 3 Stunden)

Inhaltsbezogene Kompetenzen	Prozessbezogene Kompetenzen für
Die Lernenden	
 beschreiben magnetische Felder durch ihre Wirkung auf Kompassnadeln. ermitteln Richtung (Dreifingerregel) und Betrag der Kraft auf einen stromdurchflossenen Leiter im homogenen Magnetfeld. nennen die Definition der magnetischen Flussdichte B (Feldstärke B) in Analogie zur elektrischen Feldstärke E. 	 ermitteln die Richtung von magnetischen Feldern mit Kompassnadeln. erläutern ein Experiment zur Bestimmung von B mithilfe einer Stromwaage. begründen die Definition mithilfe geeigneter Messdaten.
 beschreiben die Bewegung von freien Elektronen: unter Einfluss der Lorentzkraft, unter Einfluss der Kraft im homogenen elektrischen Querfeld, im Wien-Filter. 	 begründen den prinzipiellen Verlauf der Bahnkurven. übertragen ihre Kenntnisse auf andere geladene Teilchen. leiten die zugehörige Gleichung für die Geschwindigkeit angeleitet her.
beschreiben ein Experiment zur Messung von B mit einer Hallsonde.	• führen Experimente zur Messung von B bei Spulen mit einer Hallsonde durch. • beschreiben qualitativ die Abhängigkeit von B von I, n, l und μ_r . • skizzieren Magnetfeldlinienbilder für einen geraden Leiter und eine Spule.
beschreiben die Erzeugung einer Induktionsspannung qualitativ mithilfe des magnetischen Flusses.	führen einfache qualitative Experimente zur Erzeugung einer Induktionsspannung durch.
nennen den Zusammenhang zwischen Induktionsspannung und einer li- nearen zeitlichen Änderung des magnetischen Flusses.	 werten geeignete Versuche bzw. Diagramme zur Überprüfung des Induktionsgesetzes für den Fall linearer Änderungen von A bzw. B aus. beschreiben ein Beispiel für eine technische Anwendung der Induktion.

Altes Gymnasium Oldenburg – Physik Schuleigener Arbeitsplan mit Zuordnung prozess- und inhaltsbezogener Kompetenzen in der Qualifikationsphase Jahrgangsstufe 12 – grundlegendes Niveau (ganzjährig 3 Stunden)

Schwingungen und Wellen

Inhaltsbezogene Kompetenzen	Prozessbezogene Kompetenzen für
Die Lernenden	
 stellen harmonische Schwingungen grafisch dar. beschreiben harmonische Schwingungen mithilfe von Auslenkung, Amplitude, Periodendauer und Frequenz. 	 verwenden die Zeigerdarstellung oder Sinuskurven zur grafischen Beschreibung. ermitteln Werte durch Ablesen an einem registrierenden Messinstrument (Oszilloskop oder geeignetes digitales Werkzeug).
• geben die Gleichung für die Periodendauer eines FederMasse-Pendels an.	bestätigen die zugehörigen Abhängigkeiten experimentell.
beschreiben den Aufbau eines elektromagnetischen Schwingkreises.	ermitteln Amplitude, Periodendauer bzw. Frequenz aus vorgelegten Messdaten.
 beschreiben die Ausbreitung harmonischer Wellen. beschreiben harmonische Wellen mithilfe von Periodendauer, Ausbreitungsgeschwindigkeit, Wellenlänge, Frequenz, Amplitude und Phase. geben den Zusammenhang zwischen Wellenlänge und Frequenz an. beschreiben Reflexion, Brechung und Beugung als Phänomene, die bei der Wellenausbreitung auftreten. 	 verwenden Zeigerketten oder Sinuskurven zur grafischen Darstellung. wenden die zugehörige Gleichung an.
 vergleichen longitudinale und transversale Wellen. beschreiben Polarisierbarkeit als Unterscheidungsmerkmal zwischen transversalen und longitudinalen Wellen. 	überprüfen die Polarisierbarkeit bei einem Experiment mit Licht.
 beschreiben u. deuten Interferenzphänomene für folgende "Situationen": stehende Welle, Michelson-Interferometer, Doppelspalt und Gitter 	 verwenden die Zeigerdarstellung oder eine andere geeignete Darstellung zur Beschreibung und Deutung der aus dem Unterricht bekannten Situationen. erläutern die technische Verwendung des Michelson-Interferometers zum Nachweis kleiner Längenänderungen.
 beschreiben je ein Experiment zur Bestimmung der Wellenlänge von Ultraschall bei durch Reflexion entstandenen stehenden Wellen, von weißem und monochromatischem Licht mit einem Gitter (objektiv) 	 werten entsprechende Experimente angeleitet aus. beschreiben die Funktion der zugehörigen optischen Bauteile auf der Grundlage einer vorgegebenen Skizze. leiten die Gleichung für die Interferenz am Doppelspalt vorstrukturiert und begründet her. ordnen den Frequenzbereich des sichtbaren Lichts in das Spektrum elektromagnetischer Wellen ein.